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Pseudo-neon molecules and pseudo-krypton complexes are discussed in the light of a
recently reported theorem. It turns out that the total energy is at a minimum for smallest
screening of the nuclear charge of the central atom. Both models lead to reasonable values for
the ligand to central atom distance. The description of the binding in the pseudo-krypton
complexes is reminiscent of the well known concept of SipawIcK.

Pseudo-Neonmolekiile und Pseudo-Kryptonkomplexe werden vom Standpunkt eines kiirz-
lich mitgeteilten Theorems diskutiert. Es stellt sich heraus, daB die Gesamtenergie dann ein
Minimum erreicht, wenn die Abschirmung der Kernladung des Zentralatoms am kleinsten ist.
Beide Modelle fiihren zu verniinftigen Werten fiir den Zentralatom-Ligandenabstand. Die
Beschreibung der Bindungsverhaltnisse in den Pseudo-Kryptonkomplexen erinnert an friihere
Vorstellungen von SIDGWICK.

Des molécules du type pseudo-néon et des complexes du type pseudo-krypton sont étudiés
du point de vue d’un théoréme récemment publié. Il apparait que I’énergie totale est minimale
pour le plus faible effet d’écran sur la charge nucléaire de I'atome central. Les deux modéles
conduisent & des valeurs raisonnables de la distance entre le ligand et 'atome central. La
description de la liaison dans les complexes pseudo-krypton rappelle le concept bien connu de
Sidgwick.

A. Introduction

As is well known the Variation Method of Quantum Chemistry proceeds by
first finding the integral* (¥ | H|¥) and then minimizing it with respect to
parameters such as Z* (representative of the effective nuclear charges) and R
(representative of the atomic distances). Furthermore, it is well known that the
virial theorem Ej = — Ty is satisfied at the point (Z%, Ry) of the (hyper-)
surface B = E(Z*, R), where the minimum of energy By = E(Z%;, Ryr) is achieved,
provided the kinetic energy part of the Hamiltonian H is homogeneous of the
order —2 and the potential energy homogeneous of the order —1. The very fact
that the virial theorem is satisfied does, however, not necessarily guarantee that
By is close to the true energy. This depends to a large extent upon how good a trial
function ¥ was chosen in the first place. If now in the sense of perturbation theory
HPis a good approximation to the Hamiltonian in question and if we know a solu-
tion ¥ of the unperturbed problem, than it might be a good idea to use ¥° as a
trial function. It is with this understanding that we use the term Variation Pertur-
bation Theory. KELLNER [1], in his calculation (1927) of the energy of the He-
ground state was probably the first to apply such a theory.

* Assuming the trial function ¥ to be normalized.
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Let the Hamiltonian H be partitioned into H = H° + H*. 1t then follows from

what we have stated earlier that
E(Z*, R) = (P° | H| P
= (PO | H° | P + (PO | HY | %) (1)
= E%Z*, R} + E\(Z*, R).
It has recently been shown [2] that for a certain class of problems the correction
term E' vanishes identically if the total energy is minimized, i.e.,
BVZ%, Ry) =0
and, therefore,
By = E(Z3;, By) = E™Z3;, Ry) .

In the above mentioned paper the class of problerus is defined by the Hamiltonian
of a one-center problem, i.e., either a genuine atomic problem or the problem of an
atom (ion) surrounded by charges gy at distances Ry.

In the case of a genuine atomic problem £ is a function of the effective charge
Z* only and the value Z¥; of this parameter at the minimum of the total energy is
given implicitly by the equation E'(Z*) = 0. Besides this equation leads to the
interesting conclusion [3] that for the minimum the repulsion among the electrons
and the attraction between the screened charge (Z — Z*) of the nucleus and the
electrons exactly balance each other [cf. Eq. (6) of the above mentioned paper].
Furthermore, if one minimizes the average energy of an atomic configuration
(nl)™ one obtains [3] an analytical expression for Slater’s screening constants o,
for equivalent electrons. It turns out that o,; is essentially the average repulsion

2
of two equivalent electrons multiplied by a factor —%— .

As pointed out already in [2] in the more general case of an atom (jon) sur-
rounded by point charges E*, besides being dependent upon Z*, is also a function
of qx and By As will be seen below from E(Z*, ¢z, B;) = 0 it then follows, that
the screening number ¢ is no longer a constant as in the atomic case but a function
of the gz and Rg. In what follows we shall consider molecules which may be
treated as pseudo-atom problems and which therefore belong to the above men-
tioned class of problems.

B. Pseudo-Neon Molecules*

Although in principle all hydrides of second row elements with a total number
of 10 electrons could be considered here we shall concern ourselves only with the
case of the tetrahedral molecules BH,, CH, and NH;. These molecules have been
treated by HARTMANN and GLIEMANN [4] and by GREIN [5] respectively as pseudo-
neon problems. If one assumes, that the nucleus is completely screened by the
two 1s-electrons, then, the Hamiltonian for the model is

8 Z-2 1 8 & 1 4 13 -
Ho b (- P20) 33 -3 S L et g0

(gr = 1, By = R) . (2)
If it is so partitioned into H = H° - H! that

8 Vi
H =3 {t; —— (3)
=1 7
* Unpublished results, Frankfurt (Main) 1962.
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and

8 13 =
Z +ZZT“Z Z;“l‘ Z—2) + EVG (4)
=1 i<y 1Y 1=1k=1

then the trial function is a neon-like determinantal funection

PoZ*) = l 25 2s 2py 2_170 2p, 2_1’1 2p—, 2—19—1>

(5)
and the theorem from [2] applies*.
Vi 581 4 13Y8
1 _ 82 (7 _9 7% 1.2 g% — —=270
E 84 (& —2—2%) + 507 32+ FVO)+ 5 Z -2+ 5—=. (6)
where

3 1 1
=1 — e = —xt g8 — R-Z*
ya)=1—e <1+ x + x-}—mz),x—RZ .

R is measured in atomic units. The first term on the left side of (6) is the attraction
between the ‘“‘screening charge” (Z — 2 — Z*) and the 8 electrons of the filled
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Tig. 1. Screening of the central atom charge in pseudo-neon molecules

(2s, p)-shell. The second term is the electron repulsion and the third represents the
attraction between the 4 protons and the electrons. The fourth and the last term
take account of the repulsion between the core (Z — 2) and the protons and among
the protons respectively. Because of B = E° and E®= — To = — T the virial
theorem is satisfied for all Z* = Z*(z) which obey E*

= 0, i.e., when all contribu-
tions add up to zero. Introduction of the screening number ¢ = % — 2 — Z* and
division of E* = 0 by 2 Z* yields

5 z 1316
o) = 55—6~16y( TNV R LY

! (7)
This relationship is shown in Fig. 1 for Z =5 (B)

6 (C). As stated earlier the
screening number is no longer a constant as in the case of a free atom (ion) but

* That the perturbation energy vanishes has been shown by GREIN [6] for the energy ex

pressions which occurred in his calculations of CH},CH; and CHj. Earlier, due to numerical

inaccuracies, it had been assumed [7] that it was small. However, general conditions under
which the perturbation energy necessarily vanishes have been given in [2]
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Table 1. Minimum Values for Tetrahedral
s2p?-Hydrides

BH; CH, NH;
ow  1.042 1.423 1.753
@n 4906 5.635 6.506
ZE  1.958 2.577 3.247
Bu 2506 2.187 2,004

depends upon z and, therefore, upon R. However, for B —co only the first term,
arising from the screening of the seven “other” (2s, p)-electrons of the Ne-like ion

equal to % = 2.269, remains. Although for the entire curve the virial theorem
is satisfied, only one point of it corresponds to the minimum of the energy: the

point of minimum screening number or maximum Z*. This is because the total

energy  is simply equal to — 7° = — Z*2 along the entire curve. It is worth
mentioning that only for pseudo-atom problems is the total energy at a minimum
for smallest screening. For genuine molecular problems these two points do not
generally coincide. Table 1 lists the values oy and wpr for the three molecules.

The values Z% (from o) and By (from xzr and Z¥) and, therefore, also the
energy values, agree with the results of the earlier authors {4, 5].

From (7) it is obvious, that repulsive terms (positive) increase o, whereas the
(negative) attraction between the protons and the electrons decrease ¢~ ou, there-
fore, increases from BH; to NHJ, but not enough to compensate for the higher
nuclear charge. As a result, Z¥ and, therefore, the ‘binding energy’ increase in
the same direction. The same argument applies to the isoelectronic series CHy,
NH;, OHF (compare [8]).

Since these molecules can also be treated as pseudo-neon problems their total
energy is also equal to — Z¥2, only that Z% because there are now three protons
instead of four is to be determined from a somewhat different Eq. (7). This is also
true for the radical CHy [9] and for the discussion of alternative lattice types of
the Be,C crystal [10]. As stated in [2], the theorem can also be applied to open
shell problems such as CHj, which has been treated as a pseudo-sodium problem

[11]. In this case B = — %Zﬁ‘f .

C. Pseudo-Krypton Complexes*

The concept of the extraordinary stability of rare gas-like molecules has also
been applied to coordination compounds. According to Sipewick the great
stability of the [Co(NH,),]3+-ion for example is due to the circumstance, that the
complex ion resembles the closed shell structure of krypton. It is, therefore, inter-
esting to find out whether a pseudo-krypton model predicts reasonable values for
the distance between the central ion and the ligands in ammines of d¢-central ions.

We assume that the nucleus is completely screened by the 18 electrons in the
1s, 2s, 2p, 3s and 3p-shells. If the ligands altogether donate 12 electrons, the central
ion achieves the configuration (3d'¢ 452 4p®). The ligands represent point charges
of two units. The Hamiltonian for the model then is

* Presented at the Symposium on Theoretical Chemistry, Vienna, 29. 3. — 1. 4. 1967.
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PR essL-S S R gut 42 )

i<j Ty i=1k=1 Tik

(qk =2, B = R).
If now H is so partitioned into H = H° + H* that

18 7%
m-3 (h-2) (9)
i=1 71
and
) 8§ Z 18- 6
Hi=-35 "7 DD D Z—+ (Z — 18) + 2 (1+4)2) (10)
=1 i<j T {=1E=1T# B
then the trial function is a krypton-like determinantal function
PZ*) = |8dy3dy. ... .. .. 4sds 4dp, 4p,. ... (11)
and we may again apply the theorem from [2].
B = Vae + Vee + Vet Vie+ Vi (12)

The attraction between the screening charge o = Z — 18 — Z* and the 18 3d, 4s,
4p-electrons is

zZ* zZ* z* 29
= — N R Z V= 7%
Ve = a<109 —1—216—}—616)_ 1SZo'.
The repulsion among the 18 electrons is
Voo = 45 Eqy(3d?) + Hyp(4s?) + 15 Hyy(4p?)
+ 12 Epy(4s 4p) + 20 Egp(4s 3d) + 60 Eqy(dp 3d) .

The average energies H,, for pairs of equivalent as well as nonequivalent electrons
have been listed in [12] in terms of the well kown Slater-Condon parameters. These
have been caleulated by HURTHLE [13], using hydrogen-like functions. One then
finally obtains

Vee = 8.622 Z* .

The attraction between the 18 electrons and the 6 ligands is
Vie=—120J3 — 24 J 0~ 72 J 4,

where the relevant integrals J,; = (% —L Rn1) are

1 2
—_ _ =Y = Rl BTl I Bl _Z b
Tn=3 {1 ¢ x<1+ m+ TR T +729 —|—10935x)}

Fom % {1 e

(o By B ga Loy B o 5o 1
XU+ B% T 55% Tigs 256 T 2048 36864 147456

J41 — %{1 — gt

7 1 1
— 2 _ 3 - 4 6 7
x (1 TR + gt 384 T 768 + 0720 T 30280° T 245760 " )} :

The repulsion between the core (Z — 18) and the 6 ligands is simply
12

Vie =7 (Z— 18)
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Fig. 2. Screening of the central ion charge in pseudo-kryton complexes

and the repulsion between the ligands in octahedral positions is given by

sz=~6—(1—l—41/§) — 30.041 1.

Z* leads to

Division of E* =0 by

o(x) = 5.3516 — 74.4828 3/1—9(;—) — 59.5862 @

+ — [24.7909 - 7.4483 (Z — 18)]

(13)
Yilw) = 1 — el (1 + ix 2y

where

LI RO T
7 ’729 ' 10935
13
=1 — g2 3 5 6 7
Yolw) =1 —e x<1+ x+ 6a” Jr10240 “isasz0 " T
Eq. (13) is illustrated in Fig. 2 for Z = 26 (Fe), 27 (Co). Table 2 lists the values

7
1474560 © ) '
oy and 7 for the energy minimum*, as well as the corresponding values Z¥;, Ry

Table 2. Minimum Values for dé-Hexam
mines

Fe(II) Co(TIT)

Ni(IV)
oM

3.399 3.774 4.113
T 18.679 20.993
7%

22.930
* 4.601 5.226 5.887
By 4.059 4.017

3.895
The energy in all three cases is equal to By = — == Z}2

(13).

It turns out that the pseudo-krypton model predicts reasonable metal-ligand
* I am indebted to Dipl. Phys. E. FRENKEL for the numerical evaluation of Eqgs. (7) and

distances. The effective radius of NHj in transition metal ammines is known to be
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1.40 A from crystallographic data [14]. Using the Goldschmidt radii for Fe(II)
and Co(ITI) one then gets 4.21 and 3.88 atomic units respectively for the ligand to
central ion distances in the Fe(Il) and Co(IIl)-hexammines. The first figure
corresponds to the (quintet) groundstate of the [Fe(NH,),]?*-ion. In the excited
14,-state one would expect the distance to be even smaller.

D. Discussion

The models with which we have been concerned here only lead to binding
with respect to the ionic components from which they are built up, ie. with
respect to O~ and 4 H+ in the case of CH,. They do not lead to binding with
respect to the neutral components. They are really only limiting structures which
would have to be included in a VB-type treatment, It is, therefore, remarkable,
that they, nonetheless, lead to atomic distances which are not far from reality.

Furthermore it is interesting to compare the effective charge Z* in the com-
pounds and the effective charge Z§, calculated by minimizing the average energies

of the free central atoms (ions) Rele-

Table 3. Effective Charges for the ouler Elec- vant data are collected for CH, and
trons of the Central Atom (Ion) [Co(NH,),]3+ in Table 3.

Asonewould expect from the model

C (2s2 2p?) :3.085 Co®t (348 $7.417 .
C'( (252 gp)s) 9753  Co’— Egds)451 4p%:5.403  Wehaveused, Z*issmaller than ZEof C
CH, 12577 [Co(NH)P+ :5226  andCo3*, respectively. However, Cand

Co®*t have not “kept all the electrons’,
which were given them by the model: whereas Co®+ has kept only 6 out of 12, C
has kept only 1 or 2 out of 4. Thus the description of the binding in the hexammine-
complex by a pseudo-krypton model bears a certain resemblance to the description
which was proposed more than 30 years ago by Sipewick [15] for this type of
coordination compound.
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